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1. Field gave a new argument against Excluded Middle.

2. He explained shortcomings of the logic proposed in his

publications and suggested an alternative: Ly, — (U).
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One Challenge and One Suggestion

1. Today’s absurdity principles conflict with Field’s probabilistic

understanding of rejection.

2. We know more about Ly, — (U) than suggested in the talk.
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Truth and Rejection

Outline

Truth and Rejection
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Truth and Rejection

Field’s Argument from Rejection

» Field: for consistent naive truth, restrict Excluded Middle.
» He has argued from four principles of rejection.

R1 Reject(¢p A —T"¢")

R2 Reject(—¢ A T¢")

R3 Reject(p) AReject(y)) — Reject(d v ¥)

R4 Reject(¢p A ) A (¢ < 1) — Reject(d) AReject(1))

I. Ao =T\

2. Reject(A) AReject(—T"\") Rl +R4
3. Reject(A v =T"\") R3
4. Reject(A v —A) Naivety of ‘7"

» ‘... we should reject the application of the law of the excluded

middle to the Liar sentence’ (slide 7)
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Truth and Rejection

... doesn’t square well with Classical Probability ...

» Rejecting ¢ is to have a low degree of belief in ¢ [Field, 2005, p.
26][Field, 2008, p. 74].
» Accept() 1o P(¢) > T
» Reject(¢) o P(o) < (1—1)
» If P(¢) + P(—¢) = 1 then Reject(¢) iff Accept(—¢).
» Accept(\) iff Accept(—T"\") iff Reject(T"\") iff Reject(\).
» Reject(A v — ) iff Accept—(A v =) iff Accept(—A A A) iff
As(N) iff Accept(A v =)
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Truth and Rejection

. nor with any other

» Field has noticed this [Field, 2005, p. 26], [Field, 2008, pp. 74n]

» His response: restrict classical probability theory.

» PO\ + P(=)) < 1
P(A\) + P(—\) > 7

Accept(\ v =)

P\ +P(—\) < (1—71)

Reject(\ v =)

(I—=7)<P\)+P(—N\)<T

Neither

» The degree-of-belief account of rejection either begs the question

against Excluded Middle, or refutes his argument.
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Truth and Rejection

Suggestion

» Don’t reject LEM, keep silent.
r(Il=7)<PAv =N <T
S1 Silent(¢p A =T ¢")
S3 Silent(¢) ASilent(¢)) —Silent(¢ v )
S4 Silent(¢ A 1) A (¢ < 1) —Silent(¢) ASilent(e))
= Silent(\ v —\)

» ‘Paracompleteness runs deep’ [Field, 2008, p. 72]
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Conditionals and Restricted Quantification

The Offer from Field’s Book

» Field constructs a revision sequence of Kripke fixed point
models.
» This allows him to define a stronger conditional —.
929
Ch e T
» determinately ¢ iff ¢ A —(¢p —> —¢)
> Any \* & = DD ... D\* is of value } but
—_—

a X
wW(=DDD...DX*) = 1
—

aX
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Conditionals and Restricted Quantification

Restricted Quantification

» — provides restricted universal quantification
» ‘Every PA-theorem is true’: Vx(Bewps (x) — Tx)
» However, Field’s — does not give

EASY Vx(x) — Y(x)(6(x) — $(x))
HARD 3x(x = 1) A 6(1) k= Vx(6(x) — ¥(x)) — ¥(0)
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Conditionals and Restricted Quantification

Stronger, but not Quite FL.ukasiewicz

»>

Lukasiewicz Ny-valued logic gives both (EASY) and (HARD)...
... but is inconsistent with naive truth.
Field conjectures (slide 23):

U ((¢=9)—v) - (ovy)
Ex
truth theory’

, — U, if consistent, ‘probably ...the best possible naive

Can’t we get any closer?
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Conditionals and Restricted Quantification

BCK Logic

» In the 1950s, C.A. Meredith proposed
B (¢ —>¢) = (= x) = (¢— X))
Co—-(o-v)—7v) = (H) as a law
K ¢— (¢ — 9¢) = Weakening = (E)

» BCK validates (EASY) and (HARD) out of the box.

v

(HARD) even in the form of a law.
» BCK =Ly, — U [Priest, 2008, 11.5.3-9]
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Conditionals and Restricted Quantification

BCK Algebras

» Forv(¢ — v) = v(¢) = v(1p) BCK is sound and complete wrt
algebras (X, 1, =) such that

Id fx=y=1landy=x=1thenx=1y
Bi (x=y)=(y=2)=k=2)=1
Cox=((x=y) =y =1

K, x=@h=x) =1

» Partialorderx <y :o> x=y=1
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Conditionals and Restricted Quantification

Naive Truth with BCK?

» Field (slide 23):

It’s natural to hope that if we drop (U), we can get a naive

truth theory in the weakened logic.

» Alas, for ¢ v ¢ & —¢ — ) BCK proves ¢ v —¢.
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Conditionals and Restricted Quantification

Naive Truth with BCK Conditional?

» Nonetheless, BCK is a promising starting point: add — to
paracomplete Kleene logic.
» Naive set theory has been developed within BCK
[Grisin, 1982, Bunder and daCosta, 1986]
» My suggestion:

Let’s build on the rich BCK literature to promote

paracomplete truth theory.
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Conditionals and Restricted Quantification

A BCK-Kleene Algebra

» Bounded commutative BCK algebras are distributive lattices
[Hoo, 2001].

Ao u, 1}, 1,=)

» Assume 0 = y = 1 (0 is the lower bound) and
Thx=y=y=U(=x)=>x
rx*=0=>xxuy=x* =y

> Letv(=¢) = v(¢)* and v(¢ v ¥) = v(¢) Liv(¢)

» Do we get Strong Kleene logic for — and v?
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Conditionals and Restricted Quantification

Kripke Fixed Point Model

»

The existence of fixed point models follows from the
Knaster-Tarski-theorem for coherent complete partially ordered
sets (‘ccpo’).

The Kleene value space ({0, u, 1}, <s)isa

N

The corresponding valuations v : L, — {0,u, 1} with v <y, v/ iff

cepo: |

for every L,-sentence ¢, v(¢) <gs V'(¢) make up a ccpo V, too
[Visser, 2004, lemma 7].
Strong Kleene logic for £,,\L,-sentences provides a monotone'

operator K : V —
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Conditionals and Restricted Quantification

The Kripke Jump

» Let m(¢) be the value of the £,-sentence ¢ in the standard

model.
K1 K(v)(¢) = m(¢) for ¢ €Sent,
K2 K)(T™)7) = v()
K3 KW)(=¢) =1 - K() ()
K4 KW)(¢ v x) = max{K(v)(¥)), K(v)(x)}
K5 K(v)(Vxy)) =min{K(v)((t/x))|t closed term}?
» There is a ccpo of fixed points vy = K(vy).

» Especially, there’s a least fixed point.

ZSince we deal with arithmetic, it can be assumed that every object has a name in

the language.
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Conditionals and Restricted Quantification

Adding the BCK Conditional

» It’s still a BCK algebra.

(¢ = ) = v(¢) = V(1)

(E) = v (¢ — (¥ > 6)) = v(¢) = (v(1)) = v(¢)) = 1
v (Hio) =7 (6= (6 = ¥) = ) = 0(6) = (((0) =




Conditionals and Restricted Quantification

Summary

1. How does Field’s new argument from rejection principles square

with his probabilistic account of rejection?

2. Let’s develop paracomplete truth with a BCK-conditional.
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Conditionals and Restricted Quantification
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